Lab 8, Unbiased Estimator(Due Apr. 17, 11:59 PM, 2015)

Shanshan Zhang, tuf14438@temple.edu Illustration of unbiased estimator.

Contents

Question 1: load poiss.mat, download link

http://nymph332088.github.io/CIS2033/2033/Labs/Lab8/poiss.mat . Let the discrete random variable $X$ be the number of customers visiting ABC Bank in a hour. We know that $X ~ Poiss(lambda). The poiss.mat stores such information: 1000 records. 1.1) Draw the histogram of the 500 data samples. 1.2) Estimate lambda; 1.3) Based on the computed lambda, randomly generate 500 data samples from Poiss(lambda)

Question 2: load norm.mat.

http://nymph332088.github.io/CIS2033/2033/Labs/Lab8/norm.mat Let the continuous random variable $X$ be the price changes of the product XYZ. Positve values mean its price is increased and negative values means its price is decreased. We know that X ~ N(mu, sigma^2). The norm.mat stores 1000 records of such information. Please load the data and 2.1) Draw the histogram of the 1000 data samples. 2.2) Estimate mu and sigma; 2.3) Based on the computed mu and sigma, randomly generate 500 data samples from N(mu, sigma^2)

Hint code for question 1:

% Download the data from the website, then load('poiss.mat');
% Esitimation: lambda1 = mean(X);
% Random generation: data1 = poissrnd(lambda1,500,1);