Homework based on Chapter 20, 21 Computational Probability and Statistics CIS 2033, Section 002

Due: 9:00 AM, Friday, April 24, 2015

20.1 (5 points) Given a random sample X_1, X_2, \ldots, X_n from a distribution with finite variance σ^2 . We estimate the expectation of the distribution with the sample mean \overline{X}_n . Argue that the larger our sample, the more efficient our estimator. What is the relative efficiency $Var(\overline{X}_n)/Var(\overline{X}_{2n})$ of \overline{X}_{2n} with respect to \overline{X}_n ?

Answer: Since, X_i and X_j are independent, then $Cov(X_i, X_j) = 0$ for $i \neq j$. Let $Var(X_i) = \sigma^2$, i = 1, 2, ..., n, $Cov(X_i, X_j) = \gamma = 0$, $i \neq j$. Then $Var(\overline{X}_n) = Var(\frac{X_1 + X_2 + ... + X_n}{n}) = \frac{1}{n^2} (n\sigma^2 + n(n-1)\gamma) = \frac{\sigma^2}{n}$. Then, the larger n is, the smaller $Var(\overline{X}_n)$ is, the more efficient the estimator is. (Also means that the smaller MSE is).

 $\frac{Var(\overline{X}_n)}{Var(\overline{X}_{2n})} = \frac{\frac{\sigma^2}{n}}{\frac{\sigma^2}{2n}} = 2$, which means that \overline{X}_{2n} is twice as efficient as \overline{X}_n .

20.7 (5 points) In Exercise 19.7 you showed that both T_1 and T_2 are unbiased estimators for θ . Which estimator would you prefer? Motivate your answer.

Answer: $Var(T_1) = \frac{16}{n^2} Var(N_1) = \frac{16}{n^2} np_1(1-p_1) = \frac{16}{n} \frac{1}{4} (\theta+2) \frac{1}{4} (2-\theta) = \frac{4-\theta^2}{n}$ $Var(T_2) = \frac{16}{n^2} Var(N_2) = \frac{16}{n^2} np_2(1-p_2) = \frac{16}{n} \frac{\theta}{4} (1-\frac{\theta}{4}) = \frac{4\theta-\theta^2}{n}$ Since $0 < \theta < 1$, then $\frac{4\theta-\theta^2}{n} < \frac{4-\theta^2}{n}$. T_2 is more efficient.

21.9 (5 points) Tossing a coin is a Bernoulli trial, the random variable X denoting the results of a toss follows a Bernoulli distribution $\sim Ber(p)$, where p is the probability of getting a head.

a). Suppose you observed 10 tosses of a coin which are H,T,T,T,T,H,H,T,T,T. Determine the maximum likelihood estimates for *p*.

Answer: For $X \sim Ber(p)$ if P(X = H) = p, P(X = T) = 1 - p Then, the likelihood for the observation is a function in terms of p, $L(p) = p^3 * (1-p)^7$. To achieve the maximum of L(p), we have to set $\frac{dL(p)}{dp} = \frac{d(p^3)}{dp} * (1-p)^7 + p^3 * \frac{d(1-p)^7}{dp} = 3 * p^2 - 7p^3(1-p)^6 = 0$, which we get the maximum likelihood estimator for $p = \frac{3}{10} = 0.3$.

21.10 (5 points) Let x_1, x_2, \ldots, x_n be a dataset that are observations of a random variable from a $Par(\alpha)$ distribution. What is the maximum likelihood estimate for α .

Answer: For $Par(\alpha)$, $p(x_i) = \frac{\alpha}{x_i^{\alpha+1}}$, then $L(\alpha) = \prod_{i=1}^n \frac{\alpha}{x_i^{\alpha+1}} = \frac{\alpha^n}{\prod x_i^{\alpha+1}}$, then $\ell(\alpha) = n \log(\alpha) - (\alpha+1) \sum_{i=1}^n \log(x_i)$, let the derivative to be zero, then $\frac{n}{\alpha} - \sum_{i=1}^n \log x_i = 0$, then $\alpha = \frac{n}{\sum_{i=1}^n \log x_i}$