Chapter 2 Outcomes, Events and Probability

1 Summary

- - A sample space (Ω) is a set of all the outcomes for a certain experiment.
 - A event is a subset of the sample space.
- The *intersection* of event A and event $B(A \cap B)$ is a set containing all the outcomes when both A and B occur.
 - The *union* of event A and B $(A \cup B)$ is a set containing all the outcomes when A or B occurs.
 - The *complement* of event A, $A^c = \{ \omega \in \Omega : \omega \notin A \}$, is a set containing all the outcomes when A does not occur.
- The event A and event B are *disjoint* or *mutually exclusive* if A ∩ B = Ø.
 The event A implies the event B if A ⊂ B.
- DeMorgan's Laws
 - For any two events A and B, we have
 - $(A \cup B)^c = A^c \cap B^c$ and
 - $(A \cap B)^c = A^c \cup B^c$.
- A probability function P on a finite sample space Ω assigns to each event A in Ω a number P(A) in [0,1] such that
 - * $P(\Omega) = 1$, and
 - * $P(A \cup B) = P(A) + P(B)$ if A and B are disjoint.

The number P(A) is called the probability that A occurs.

- A probability function on an infinite (or finite) sample space Ω assings to each event A in Ω a number P(A) in [0,1] such that
 - * $P(\Omega) = 1$, and
 - * $P(A_1 \cup A_2 \cup A_3 \cup \cdots) = P(A_1) + P(A_2) + P(A_3) + \cdots$ if A_1, A_2, A_3, \ldots are disjoint events.
- $-P(A) = P(A \cap B) + P(A \cap B^c).$ $-P(A \cup B) = P(B) + P(A \cap B^c).$ $-P(A^c) = 1 - P(A).$
- The probability of union. For any two events A and B we have $P(A \cup B) = P(A) + P(B) - P(A \cap B)$. For any three events A and B and C we have $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$.
- Products of sample spaces

When we perform an experiment n times, then the corresponding sample space is $\Omega = \Omega_1 \times \Omega_2 \times \cdots \Omega_n$, where Ω_i for $i = 1, \ldots, n$ is a copy of the sample space of the original experiment. Moreover, the probability of the outcomes $(\omega_1, \omega_2, \ldots, \omega_n)$ is $P((\omega_1, \omega_2, \ldots, \omega_n)) = p_1 \cdot p_2 \cdots p_n$ if each ω_i has probability p_i .